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LETI’ER TO THE EDITOR 

New classes of conserved quantities associated with 
non-Noether symmetries 

M Lutzky 
10111 Quinby St, Silver Spring, Maryland 20901, USA 

Received 3 November 1981 

Abstract. A recent result of Hojman and Harleston has been used to extend the known 
relationship between conserved quantities and non-Noether symmetries. We show that N 
constants of the motion may be derived from each non-Noether symmetry of an 
Ndimensional Lagrangian system; this applies whether the symmetry is continuous or 
discrete. In addition, the properties of the Cartan form are utilised to give a new proof of the 
Hojman-Harleston theorem. 

A non-Noether symmetry in Lagrangian mechanics is defined by the fact that it 
transforms the solution manifold into itself, but does not leave the action integral 
invariant; examples have been given by Lutzky (1978) and Prince and Eliezer (1980, 
1981). An important property is that each continuous non-Noether symmetry gives 
rise to a constant of the motion, which may be constructed from the symmetry generator 
without further integration (Lutzky 1979a, b). It has, of course, been known for a long 
time that constants of the motion may be associated with Noether symmetries (Noether 
1918); however, the considerations relating conserved quantities to non-Noether 
symmetries are of a somewhat different nature. For example, in contrast to the Noether 
case, discrete non-Noether symmetries can sometimes lead to conserved quantities for 
Lagrangian systems (Lutzky 1981). 

A basic tool used in studying non-Noether symmetries has been the following 
theorem (Lutzky 1979b, 1981): let L(q, 4, t) and f ( q ,  4, t) be distinct Lagrangians 
leading to the same equations of motion, and let Vi  be defined by the relation 
azE/a&34i = V :  a2L/a4r adi; then the quantity det{V:} is a constant of the motion 
(note that V: is well defined if det{a2L/acjl 134,) # 0). In a recent paper, Hojman and 
Harleston (1981) have proved a more general theorem which states that not orily the 
determinant but all of the invariants of the matrix V i  are constants of the motion. Here 
we shall explore the consequences of this generalisation for the theory of non- 
Noether integrals, and in particular we shall display the resulting class 
of conserved quantities which may be obtained from a continuous non-Noether 
symmetry. We shall also show how a discrete non-Noether symmetry gives rise to a 
class of conserved quantities. Finally, we present an alternative approach to the 
theorem of Hojman and Harleston, originally proved by these authors through 
manipulation of the Euler equations. Our derivation relies on the properties of the 
Cartan form, and is in the spirit of recent treatments of Lagrangian systems employing 
the tools of modern differential geometry (see, for instance, Crampin 1977, Sarlet and 
Cantrijn 1981a, b). 
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We begin by showing how the Hojman-Harleston theorem e n o k  us to construct a 
class of conserved quantities from each continuous non-Noether symmetry. Let the 
Lagrangian L(q, 4, t) lead to the equations of motion 

I =  1,2, .  . . , N ;  (1) 4; = &I, 4, t )  

we further define the Cartan form 

and the vector field 

which represents the total time derivative along trajectories of (1). (Thus, if 4 is a 
function, r(4) = d.1 

It is well known (Sarlet and Cantrijn 1981a,b) that the operator G =  
t (q ,  t )  a / a t  + v'(q, t )  a/aq' generates a point symmetry of (1) whenever 

[E, r] = -jr (4) 

where E = G + ( T j '  - (4') 8 /84 ' ,  and r is the vector field given by (3). Furthermore, if 8 is 
the Cartan form (2), the equation 

i rde=O ( 5 )  

is equivalent to the equations of motion (1). Defining 8' = S E @ ,  it follows by direct 
computation that 

where L' = E{L}+ &L; thus 8' is again a Cartan form, for the Lagrangian L'. We may 
also show that if E satisfies equation (4), and if ( 5 )  holds, then we have ir de' = 0; for the 
proof we put ir de' = i r Y E  de  = 3 , i r  de  - i[E,r] d8 = j i r  de  = 0. Consequently L' and L 
both lead to the same equations of motion (l), and by the Hojman-Harleston theorem 
we may conclude that the matrix A, defined by a*L'/aq" 84' = A!,, a2L/aq' aq", has the 
property that all of its invariants are constants of the motion. It is straightforward to 
obtain an explicit elrpression for A!,,; for this purpose we establish the convenient 
notation LIP = a2L/a4 ad", with inverse matrix Lkl, so that Lk'LI = 8:. The equation 

Recalling that L' = E{L}  + iL ,  we may carry out the differentiations in Lkp to obtain, 
after some algebra, the result 

A & =  -& + B & + L ~ ~ B $ ~ , , ,  +L~~E{L , , , , }  (6) 

defining A!,, may be written Lkp = ALL,, and multiplying by L J gives A: = LkpLPk. 

where 

The simplest invariant to calculate is the trace, which takes the form 

A:=  - N i + 2 B f :  +E{ln D }  
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where D = det(L1,). This quantity has already been recognised as a constant of the 
motion obtainable from a non-Noether symmetry (Lutzky 1979a, b); however, the 
remaining N-1 constants of the motion, corresponding to the remaining N-1 
invariants of the matrix A, have not previously been noted. Since any function of 
invariants is itself an invariant, we see that the coefficients of the characteristic equation 
of A, the eigenvalues of A, and the quantities Tr{Ak}, k = 1,2, . . . , N, are all conserved 
quantities. At most N of these quantities can be functionally independent, and in 
particular cases the total number of functionally independent invariants may be less 
than N. 

An instructive example is provided by the Ndimensional harmonic oscillator, with 
Lagrangian L = $(4& - qq), for which Ll, = SI,. In this case conserved quantities may 
be found as invariants of the matrix whose elements are LL,,, L' = E{L} + iL. Genera- 
tors of non-Noether symmetries for the harmonic oscillator are obtainable from the 
work of Prince and Eliezer (1980), and a particular one may be specified by (for 
example) 6 = q1 sin t, Tk = qkql cos t. These functions determine a symmetry E, and 
therefore also a matrix L l n ;  evaluating the invariants of this matrix then leads to the N 
functionally independent constants of the motion q k  cos t - 4 k  sin r, k = 1,2, . . . , N. 

There are, of course, simpler methods of treating the harmonic oscillator; the value 
of this example is that it encourages the hope that there may exist more complicated 
systems for which N functionally independent integrals may be found from the 
knowledge of a single non-Noether symmetry. 

To emphasise the special properties of non-Noether symmetries, we point out that 
(4) is satisfied by all point symmetries of I'; however, if a symmetry is Noether, it must 
satisfy the additional requirement ZE de  = 0 (Crampin 1977, Sarlet and Cantrijn 
1981a, b), which leads to the condition L'= E{L}+&L = f ,  f = f ( q ,  t). (Another 
approach to this condition has been given by Lutzky (1978).) Thus, for a Noether 
symmetry we have LLl= 0 and A; = 0; this explains why only non-Noether symmetries 
can lead to non-trivial conserved quantities through the procedures described above. 

The above development is valid for continuous symmetries; we now comment 
briefly on the case of discrete, non-Noether symmetries. Let the trajectories Q' = 
Q'(T) in 0, T space be related to the trajectories 4' = 4'(t) in q, t space by the discrete 
transformation 4' = q'(Q, T ) ,  t = t(Q, T). It can be shown that if the trajectories in q, t 
space are solution curves of the dynamical system with Lagrangian L(q, 4, t), then the 
curves in 0, T space are solution curves for the Lagrangian 

where Q' = dQ/dT. If the discrete transformation leaves the equations of motion form 
invariant, then it follows that i ( q ,  4, t )  and L(q, 4, t) both give rise to the same equations 
of motion. We may accordingly define the matrix A; = i,Apk, whose invariants are 
constants of the motion (by the Hojman-Harleston theorem). Until now, only det{A;} 
was known to be conserved for the case of a discrete non-Noether symmetry (Lutzky 
1981). 

A general condition which a point symmetry of a Lagrangian system must satisfy in 
order to be Noetherian is given by 

J%I, 4, t )  = L(4, 4, t )  +p 
where F = F(q, t), and the functional form of is specified by (7). This criterion is 
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applicable whether the transformation is continuous or discrete; thus the previously 
given condition for a continuous Noether symmetry is derivable from this one (Lutzky 
1978). It follows that for a discrete Noether symmetry we have A; = S:, and we may 
therefore conclude that the application of the Hojman-Harleston theorem to discrete 
transformations can lead to non-trivial conserved quantities only if the symmetry is 
non-Noether. 

Finally, we give an alternative proof of the Hojman-Harleston theorem, using the 
calculus of differential forms. Let the Lagrangians L and i both lead to the same 
equations of motion ( l ) ,  and let 8 and e' be the corresponding Cartan forms. We have 
.Yr de = d(ir de) and .Yr de'= d(ir de'); from equation ( 5 )  and its analogue for e'we then 
obtain the results 

.Yrd8=0 .Yrde'=O. (8)  

Construct the N + 1 volume forms Rk = dt A de' A de' A . . . A d8 A de, k = 0, 1,2, . . . , N,  
where Rk contains k factors of de' and N - k  factors of de. It follows from (8) 
that .Y& = 0 for all k .  Each Rk may be expressed in the form Rk = pk dt A dq' A . . . A 

dqN A dd' A .  . . A ddN, where the pk are zero forms (functions), and it is easily seen that 
the ratio of any two of these functions is a constant of the motion. For example, let 
R/=on,,,, and calculate .YrR/=O=R,,$". Then .Y,-u=I'{a}=&=O, and U is 
conserved; furthermore, from the definition of RI and R, we must havep = p I / p m .  A 
specific expression for pk may be derived by expanding &, with de  and de  expressed in 
terms of coordinate differentials. We obtain 

pk - & ' I  ' H e l l  I N i  
1111. * * L l b J k L l k + l / k + l  * * 

=(A: '  . . . A>)(S2,'A2'kak)(N - k ) ! D  

where D = det{L,,} and the symbol - means equality to within a multiplicative constant 
(whose exact value is unimportant for our purposes). It can be shown (Lovelock and 
Rund 1975) that 

k !  A(&)  = (A:,' . . . A>)(62,'A2 I k a k )  

where A(&) is the sum of the k x k principal minors of A ;  and since p o  - D, we see that 
each conserved quantity p k / p o  is proportional to A ( & ) .  Then the A ( k )  are themselves 
conserved quantities, and since the A(kl constitute a set of invariants of the matrix A 
(being proportional to the coefficients of the characteristic equation) the theorem is 
proved. 
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